

International Civil Aviation Organization

The Third Meeting of the APANPIRG ATM Sub-Group (ATM/SG/3)

Bangkok, Thailand, 03 – 07 August 2015

Agenda Item 4: ATM Systems (Modernization, Seamless ATM, CNS, ATFM)

OPTIMIZATION OF AIRSPACE AND PROCEDURES

(Presented by the United States of America)

SUMMARY

This paper presents the Federal Aviation Administration's (FAA) efforts at leveraging Performance Based Navigation (PBN) expertise and experience to expedite implementation of optimized airspace and procedure.

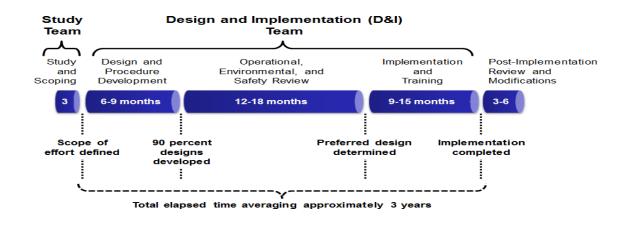
1. INTRODUCTION

1.1 In September 2009, the FAA received the Radio Technical Commission for Aeronautics' $(RTCA)^1$ Task Force $(TF)^2$ 5 final report on the mid-term Next Generation Air Transportation System (NextGen)³ implementation containing recommendations concerning the top priorities for the implementation of NexGen initiatives. A key recommendation stated that Area Navigation (RNAV) operations should be increased and optimized, with a structured and systematic approach to PBN implementation.

1.2 The convergence of RTCA's TF 5 recommendations issued in the fall of 2009, coupled with (a) lack of a way to prioritize new projects; (b) the length of time it was taking to complete large scale airspace & procedures projects (New York airspace redesign effort); and (c) the requirements to meet annual PBN production goals led to the creation of the Metroplex optimization of airspace and procedures program.

1.3 Hence Metroplex projects focus on a geographic area, rather than a single airport. This approach considers multiple airports and the airspace surrounding a metropolitan area, including all types of operations, as well as connectivity with other Metroplexes. One of the key elements of the Metroplex projects is an expedited life-cycle (approximately 3 years from planning to implementation) for the integrated airspace and procedure efforts.

¹ The Radio Technical Commission for Aeronautics is chartered by the FAA to operate Federal advisory committees; RTCA employs a consensus-driven process to generate minimum performance standards for CNS/ATM systems and equipment; to forge recommendations on key aviation policies, and identifying and developing mitigation on issues affecting air traffic management operations. These performance standards form the basis for FAA regulatory requirements; policy advice informs the FAA's prioritization and investment decisions; and tactical advice helps resolve real-world impediments to air transportation today. ² From time to time, when the FAA has a unique and immediate need for input from the aviation community on a


² From time to time, when the FAA has a unique and immediate need for input from the aviation community on a specific issue, they will ask RTCA to establish a Task Force. Since the inception of RTCA in 1935, five such Task Forces have been established and produced reports with actionable recommendations.

³ NextGen is the advanced national airspace system due for implementation across the United States in stages between 2012 and 2025.

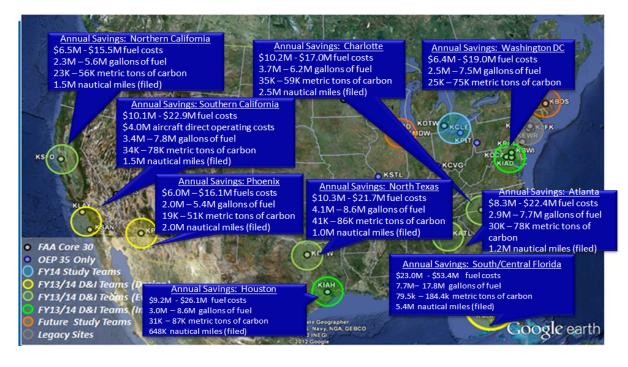
1.4 The expedited timeline for the Metroplex projects centers on two (2) types of collaborative teams. First, study teams provide a comprehensive, up- strategic look at the operational issues and problems that the Metroplex faces. Second, design teams use the results of the study teams for ongoing work in terms of design and specific solution approaches of PBN optimized airspace and procedures.

2. DISCUSSION

2.1 <u>Metroplex Process Timelines:</u>

2.2 <u>Metroplex Key Sites:</u>

Metroplex Sites


Metroplex Site Partners

2.4

Metroplex Study Teams:

Metroplex Study Teams

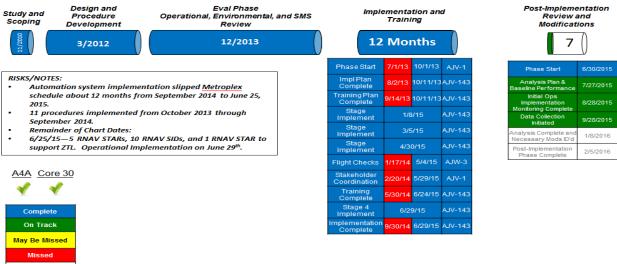
Metroplex Schedule:

FY14 FY15 FY16 FY18 FY17 3Q 4Q 2Q 4Q 2Q 1Q 2Q 3Q 4Q Site 1Q 2Q 4Q 2Q 3Q 1Q 3Q 1Q 3Q 4Q 1Q Houston T T 1 Ρ North Tex F 1 Т 1 Р North Cal Е E I Т Т Р F F L. P P Washington # T T Р Р Е # I. Atlanta Т Т E # # T I P P Р Р Р Charlotte I I I Т Ε Ε Ε I. т E Е Р Р E E Ε Ε E Ε Т I. Т I. South Cal Phoenix Е Ε 1 1 ++ D D Ε Ε Ε Т Ρ CLE/DTW ++ D D Ε Р D Е Е ΕI р D Е 1 1 1 I P Denver D D D Ε Е E E I 1 1 1 Р - 1 Р Florida D D Е Е Е D D Ε ī. ī. D Ε Т Р # 1

	•
Metroplex Schedule	
	-

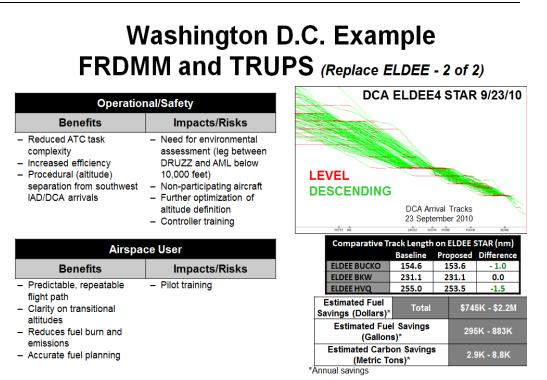
. _

Airspace Services
Airspace Optimization Group
lission Support, Eastern Service Center
lission Support, Central Service Center
lission Support, Western Service Center
Environmental Analysis
viation Systems Standards – Flight Checks
A A



2.6

Washington DC Example:


Washington, DC

24 RNAV STARs, 25 RNAV SIDs, 3 Conv. STARs, 2 Conv. SIDs

FY16 or beyond

2.5

2.7 This example is typical of all our sites, as we've identified considerable fuel burn benefits from Optimized Profile Descents or OPDs. In this case, the Study Team identified significant level-offs with arrivals into the DC Metro Area from the South. Aircraft heading to IAD, DCA and BWI are typically stacked on top of each other and laddered down, which is inefficient from a fuel burn perspective. This is a classic example for the need of an integrated airspace and procedure approach because once the OPDs are developed, there will need to be sectorization modifications in the area control center to manage the workload and gain expected efficiencies.

2.8 The following is a list of qualitative benefits we've identified from the first seven (7) sites:

- a. More efficient lateral and vertical flight paths providing segregated flow where practicable.
- b. Repeatable, predictable PBN procedures for more accurate fuel planning.
- c. Reduced ATC task complexity and pilot/controller communications due to reduced radar vectoring
- d. Reduced need for traffic management initiatives.
- e. Improved situational awareness, enhancing safety.
- a. Increased departure throughput from additional departure gates and earlier divergence off the runway.
- f. Foundations for Next Gen capabilities and tools (e.g., use of relative position indicator; required time of arrival).

3. ACTION BY THE MEETING

3.1 The meeting is invited to note the information contained in this paper and discuss any relevant matters as appropriate.